
Introducing Web Services
in HLA-Based Simulation Application

Abstract – High Level Architecture (HLA) conduces to the
integration of different models to form a complicated distributed
simulation system. However, there exist some limitations in HLA-
based simulation application in some aspects. In the paper, aiming
at resolving these problems, we focus on the study of introducing
web services in HLA-based simulation application and propose
Web Services-Based HLA Simulation Framework (WSHLA).
Firstly, the structure of and the web services in WSHLA are
presented. Then, the implementation of every components and the
execution flow of the framework are discussed respectively.
Experimental results validate the framework and demonstrate
that using the framework to introduce web services in HLA-based
simulation application can effectively make up for its limitations
and ensure its better running at expense of some time.

I. INTRODUCTION

High Level Architecture (HLA), which is designed to
promote standardization in the Modeling and Simulation
(M&S) community and to facilitate the reusability and
interoperability of M&S components, is an advanced,
distributed high-level simulation architecture, which may be
used to integrate models in different domains together to form
a complicated simulation system [1].

However, there exist the following limitations in HLA-based
simulation application [2].

In HLA, federates and RTI communicate with each other
directly using the address and the port specified in RTI
Initialization Data (RID) file. When an HLA-based simulation
application is running in the environment protected by firewall,
its communication will be blocked by firewall, which even
makes the whole simulation fail.

Due to the characteristics of programming language-specific
and platform-specific of Run-Time Infrastructure (RTI), which
is the software that implements the HLA Interface
Specification (IFSpec) and provides common services to
simulation system, the federate programmed by one language
(or using one RTI) cannot work well with the federate
programmed by another language (or using another RTI). So,
the transplant of federates is difficult and the reusability of
HLA-based federates is not good enough.

HLA, initially designed for military purpose, doesn’t take
the standards or technologies of other domains into account
adequately. So, HLA may not be well compatible with those
technologies. That may be regarded as the main reason of its
poor interoperability in multi-domains.

The above limitations make it difficult for HLA to get an in-
depth development. Therefore, HLA simulation system should

absorb and assimilate other related standards or technologies to
achieve better development.

Using eXtensible Markup Language (XML) and HyperText
Transportation Protocol (HTTP), web services represent a new
distributed computing pattern. Web services, which allow
applications to communicate in a platform-independent and
programming language-independent manner, is used to build
loose-coupling distributed applications with good compatibility.
More importantly, due to the use of HTTP, these applications
may not be blocked by firewall at all.

According to the above analysis, if web services can be
introduced in HLA-based simulation application, the
limitations mentioned above will be resolved effectively,
which will greatly improve its reusability and interoperability.
However, because web services and HLA are different
standards for different purposes and domains, it’s difficult to
glue the two together. Therefore, it has been a hot research to
find a proper and effective approach.

According to the characteristics of HLA-based simulation
application and web services, we propose Web Services-Based
HLA Simulation Framework (WSHLA) and use the framework
to introduce web services in HLA-based simulation application.
Firstly, the structure, including all components such as RTI
side and client side, and web services are presented in detail.
Then, the implementation of every components and the
execution flow of the framework are discussed respectively.
Experimental results validate the framework and demonstrate
that using the framework to introduce web services in HLA-
based simulation application can effectively make up for its
limitations and ensure its better running at expense of some
time.

The rest of paper is organized as follows: Section 2 presents
literature review. Section 3, 4, 5 discusses the structure of, web
services in and implementation of WSHLA one by one.
Section 6 validates the framework through experiments and
analyzes experimental results. Section 6 concludes the paper
and gives the plan of future work.

II. LITERATURE REVIEW

In current literature, there are three methods of introducing
web services in HLA-Based simulation application: extending
HLA federates, extending HLA communication tier and web-
enabled RTI (WE RTI) [3].

(1) Extending HLA federates. The method, which just
applies web services to all federates in a federation without

changing RTI, is the simplest method in the above three
methods. David Macannuco uses the method in Ref. [4] to
develop a distributed simulation and training system that
provides a common operating environment or user interface to
bind selected components together and allows any user to
access and manage it using a web browser. Though with a
simply structure, the method needs different XML schemes
specified by users when running in different environment. So,
the extendibility of the method is not good enough.

(2) Extending HLA communication tier. The method
changes all HLA services in IFSpec to web services. RTI and
federates may use these web services instead of original HLA
services to communicate. Though it sounds well, the method is
actually very difficult to be carried on because 1) the whole
RTI needs to be redesign and 2) when the new RTI is put to
use, users must modify original federates to adapt to the
change. Bjorn Moller describes in Ref. [5] the design of HLA
Evolved WSDL API, which is still far from practical use.

(3) WE RTI. Because of the difficulty of the second method,
some scholars proposed web-enabled RTI that can half extend
RTI communication tier using web services. The goal is to
enable a simulation to communicate with an HLA/RTI through
web-based services. The long-term goal of it’s to have multiple
federates that can reside as web services at Wide Area Network
(WAN), permitting an end-user to compose a federation from a
browser. In Ref. [6][7], Katherine L. Morse builds a prototype
HLA federation using WE RTI. In that federation, Simple
Object Access Protocol (SOAP) and Blocks Extensible
Exchange Protocol (BEEP) are used for communication
between two federates. Compared with the first method, WE
RTI has a better universality and can be applied to existing
simulation applications easily. However, the introduction of
bridge mechanism, which is still immature, makes it a little
difficult and complicated to put the method into practice.

In a word, the first and the third are two comparatively
practical methods. A framework, which combines both the
advantages of the two methods, was proposed by us in Ref. [8].
The framework, with a simple structure and good universality,
can effectively introduce web services in HLA-based
simulation application. But, the framework still has its
limitations, such as low efficiency. In the paper, we will focus
on improving further the initial framework.

III. STRUCTURE

From the above analysis, we may safely arrive at the
conclusion that the old manner of communication is the main
reason resulting in those limitations. So, we propose Web
Services-Based HLA Simulation Framework (WSHLA) and
use the framework to introduce web services in HLA-based
simulation application to change the situation.

A. Overview
WSHLA may be divided into two main components (Client

Side and RTI Side) structurally. The overall structure of
WSHLA is shown in Fig. 1.

RTI

federate 1

proxy 1 …

prtiAmb

pfedAmb

proxy 2

prtiAmb

pfedAmb

proxy n

prtiAmb

pfedAmb

invocation of web services

RTI Side

fedAmb

rtiAmb

federate 2

fedAmb

rtiAmb

federate n

fedAmb

rtiAmb

Client Side 1 Client Side n

WSHLA
/RTI lib

libRTI

…

Figure 1. Overall Structure of WSHLA

In Fig. 1, there are one RTI side and some client sides. We
deploy RTI at RTI side, and federates at client side. In RTI side,
pfedAmb is the federate ambassador of HLA/RTI, and
prtiAmb is the RTI ambassador of HLA/RTI. In client side,
conforming to IFSpec, WSHLA/RTI lib is designed to call web
services. FedAmb is the federate ambassador of WSHLA/RTI,
and rtiAmb is the RTI ambassador of WSHLA/RTI. Proxy is a
new introduced object, which will be discussed at length in the
next paragraph.

B. RTI Side
In WSHLA, RTI and all necessary web services are

deployed at RT Side. Besides the two parts, proxy, a new
introduced object, is also deployed at RTI Side.

Definition 1: In WSHLA, the object, deployed at RTI side,
which is on behalf of a federate in communicating with RTI, is
called proxy.

In WSHLA, every federate in client side has a corresponding
proxy in RTI side. Federates and RTI communicate indirectly
via the proxy using web services other than communicate
directly, which means the proxy acts on behalf of a federate
and communicates with RTI.

Before a federate joins a federation execution, it calls a web
service to create a corresponding proxy in RTI side, and then
the proxy not the federate joins the federation execution. From
the point of HLA, the proxy may be regarded as a special
federate. When calling a RTI ambassador service, a federate
calls a web service to send the request to its corresponding
proxy, which will then transfer the request to RTI. Similarly,
when calling a federate ambassador service, RTI also sends the
request to a proxy, which will then transfer the request to its
corresponding federate using web services.

C. Client Side
In WSHLA, simulation applications, federates and models

run at client side. Due to the introduction of web services,
federates running at client side don’t call the libRTI provide by
RTI software, but call the custom WSHLA/RTI library
provided by WSHLA. Except for a few special services of
WSHLA, the interface of two libraries is almost identical,

which makes the conversion from HLA-base simulation
application to WSHLA-based application easily and smoothly.

D. Advantages
In WSHLA, RTI and federates communicate with each other

indirectly via the proxy using web services. The invocations of
web services, which use XML and HTTP, won’t be blocked by
firewall. In addition, proxy is deployed at the same computer
where RTI resided at, therefore the communication between
RTI and proxies won’t be blocked by firewall either. So,
WSHLA-based simulation won’t be blocked by firewall at all.

Because federates call WSHLA/RTI lib other than libRTI,
and WSHLA/RTI lib is just the encapsulation of the
invocations of web services, any program languages that can
call web services can be used to program simulation federates
in different platforms. So, the reusability of federate will be
improved greatly.

Meanwhile, because web services has been well accepted in
a lot of domains, we may use web services as a bridge to
connect HLA and other related standards and technologies, and
then to ameliorate the interoperability of HLA-based
simulation application.

IV. WEB SERVICES

The greatest improvement of WSHLA is the introduction of
web services that are responsible for the communication
between federates and RTI. Improper design of web services
will result in low efficiency of WSHLA, even the failure of the
whole framework. Therefore, the design of web services is
essentially important.

HLA services in IFSpec can be divided into two categories:
RTI ambassador services and federate ambassador services (or
callbacks), which are used by RTI and federates to
communicate. However, in WSHLA, RTI and federates
communicates indirectly via the proxy using web services.
Therefore, web services should take the responsibility for
communication. So, firstly, we must design web services for
the two categories of HLA services. Meanwhile, due to the
introduction of web services and the change of structure, it’s
necessary to introduce some auxiliary services to adapt to these
changes.

Therefore, the web services in WSHLA should comprise
three categories: RTI ambassador web services, federate
ambassador web services and auxiliary web services.

(1) RTI ambassador web services
RTI ambassador services, provided by libRTI, are stable and

don’t change with the change of federates. The characteristic
simplifies the design of this category of web services. What we
should do is to use web services to encapsulate each RTI
ambassador service and deploy these web services at RTI side.
Therefore, each RTI ambassador service has its corresponding
web services. When calling a RTI ambassador service, users
may call the corresponding web services directly. Of course,
the invocations of these web services can be encapsulated
again for facilitating their use.

(2) Federate ambassador web services

Compared with the previous work, it’s a little difficult to
design federate ambassador web services. Because, it’s user
not libRTI who provides federate ambassador services for each
federate, which may run at different client sides. If we apply
the previous method to this category of web services, federate
ambassador web services may be deployed at different client
sides, which will then make the task of designing proxy and
using WSHLA inconvenient (Because, in the circumstance,
each client side must install web services container, which is
sometimes beyond the capability of users.).

We adopt timer and sharable file in our initial work to design
federate ambassador web services. Though the method can run
correctly, because timer is a resource-consuming object and
reading/writing file are also time-consuming operations, the
efficiency of the whole simulation system is low.

In this paper, we adopt message mechanism. When a proxy
receives a request for a callback, it will encapsulate the
information about the callback, such as name, parameters and
etc, as a message that will then be send to a message queue.
Meanwhile, a web service named GetMessage is provided for
users to get those messages that interest them. After receiving
messages, users may actually execute their custom federate
ambassador services.

(3) Auxiliary web services
Because of the change of structure, WSHLA also need to

support some auxiliary operations, such as: starting RTI,
shutting down RTI and etc. Therefore, we design the following
web services for these operations.

Starting RTI: Before running a simulation, users call the web
service to start RTI.

Getting RTI running status: Before starting RTI, users call
the web service to judge whether RTI is running in RTI side or
not.

Shutting down RTI: After all simulations are end, users call
the web service to shut RTI down.

Getting federation execution status: Before shutting down
RTI, users call the web service to judge whether there are
federation executions in RTI side or not.

V. IMPLEMENTATION

A. RTI Side
The main functions of RTI side include: to provide all

necessary web services, to manage proxy such as creating a
proxy, destroying a proxy, RTI communicating with proxy and
etc. So, we design six important classes, which are shown in
Fig. 2.

FedAmbImpl, implementing NullFederateAmbassador, is a
specific implementation of federate ambassador of proxy. Its
main function is to receive callbacks called by RTI and to use
MessageSink to manage the messages that encapsulate the
information about these callbacks.

MessageSink encapsulates the information about the callback
as a message and then sends the message to a message queue
when a callback in FedAmbImpl is called by RTI.

NullFederateAmbass
ador

RTIambassador FedAmbImpl

ProxyFactory

RTIAmbWebSrv

AuxiliaryWebSrv

MessageSink

FedAmbWebSrv

call RTI ambassador web services

call auxiliary web services

call federate ambassador web services

RTI Side

Figure 2. Class Diagram of RTI Side

FedAmbWebSrv provides a web service named GetMessage
that can be used to get message from a message queue.

ProxyFactory, aggregating instances of FedAmbImpl and
RTIambassador, manages the proxy, such as creating a proxy,
destroying a proxy and etc.

RTIAmbWebSrv, owning an instance of ProxyFactory,
provides RTI ambassador web services to users.

AuxiliaryWebSrv provides auxiliary web services, such as
starting RTI, shutting down RTI and etc to users.

B. Client Side
The main function of client side is to encapsulate the

invocation of web services and provide standard DMSO
(Defense Modeling Simulation Office) HLA interface,
including RTI ambassador interface and federate ambassador
interface. So, we design three important classes, which are
shown in Fig. 3.

WSHLA_RTIAmb: Though users can call web services in
their simulation program directly, it may be inconvenient for
those who know little about web services. Therefore, we
encapsulate the invocations of RTI ambassador web services
and auxiliary web services and provide standard DMSO HLA
interfaces to users. Hiding the direct invocations of web
services, the class makes programming much easier. The
standard APIs also enable users to be more consistent with
their programming habit and simplify the conversion from
HLA-based simulation application to WSHLA one. Due to the
characteristics of platform-independent and programming
language-independent of web services, different programming
languages can be used to encapsulate these web services in
different platforms to extend its application area.

WSHLA_NullFedAmb, implementing
NullFederateAmbassador, uses GetMessage service to get the
information about a callback, and then executes the callback
actually.

MyFedAmb inherits WSHLA_NullFedAmb. Users may
override the callbacks according to their needs.

C. Execution Flow
Introducing web services in HLA-based simulation

application makes its execution flow different from the original
application. We will discuss the execution flow from the two
aspects of calling RTI ambassador web services and calling
federate ambassador web services.

NullFederateAmbass
ador

WSHLA_NullFedA
mb

MyFedAmbWSHLA_RTIAmb

Simulation Application

Client Side

call federate ambassador web services

call RTI ambassador web services

call auxiliary web services

Figure 3. Class Diagram of Client Side

(1) RTI ambassador web services
The application in client side sends a request for calling a

RTI ambassador service using web service. After receiving the
request, RTI side parses the request. If the request is
joinFederationExecution, a corresponding proxy is created in
RTI side and then joins federation execution. If not, the
corresponding proxy sends the request to RTI for executing.
When the service is finished, the proxy returns the result to
client side. The execution flow of calling RTI ambassador
services is shown in Fig. 4.

(2) federate ambassador web services.
After a callback is created by RTI, a proxy will encapsulate

the information about the callback and then send to client side
as the form of message. Client side receives the message and
executes it. The execution flow of invoking federate
ambassador services is shown in Fig. 5.

request for calling
a RTIAmb service

encode parameters

call web services
decode parameters

create a proxyjoin fed
exec？

execute the
RTIAmb service

decode result
encode result

resume simulation

Y

N

Client Side RTI Side

Figure 4. Execution Flow of Calling RTI Ambassador Services

request for calling
a fedAmb service

encode parameters

generate a
messagedecode parameters

execute the fedAm
service resume simulation

Client Side RTI Side

Figure 5. Execution Flow of Calling Federate Ambassador Services

VI. EXPERIMENTS

Experiments are designed to validate WSHLA. Experimental
environment is: Windows XP Professional, Java 1.4, C#, Pitch
pRTI 1.3, Tomcat 4.1 and Axis 1.4. The experimental system
is shown in Fig. 6.

RTI side

LAN / WAN

client side 2
federate 2 (C#)

client side 1
federate 1 (Java)

Figure 6. Structure of Experimental System

In the experiment, a federation comprising two federates
programmed with Java and C# respectively is created. Running
at client side 1 and client side 2 respectively, the two federates
have the capability of sending/receiving interactions and
updating/reflecting attributes.

We modify the benchmark program from DMSO HLA
packet and focus on the latency benchmark [9][10]. The latency
benchmark program measures RTI performance in terms of the
latency of federate communications. More specifically, the
benchmark program measures the elapsed time it takes for
federates to send/receive an interaction or update/reflect an
attribute.

We measure the elapsed time in LAN and WAN with
firewall turned on and off. Meanwhile, we also conduct the
same experiment in the same circumstance using HLA and our
initial prototype system for comparing the experimental results.
The experimental result measured in LAN and in WAN is
shown in Fig. 7 and Fig. 8 respectively.

25

5
10
15
20

30
35
40
45

25

5
10
15
20

30
35
40
45

firewall off firewall on

Initial
WSHLA

50 50

tim
e

(m
s)

HLA

Figure 7. Experimental Result in LAN

400

200
250
300
350

450
500
550
600

firewall off firewall on

400

200
250
300
350

450
500
550
600

650 650

tim
e

(m
s)

Initial
WSHLA

HLA

Figure 8. Experimental Result in WAN

First, from the experimental result, it’s obvious that when
firewall is turned on, HLA-base simulation application is
completely blocked by firewall and we cannot get any data in
this circumstance. On the contrary, firewall exerts no influence
on any version of WSHLA-base simulation application.

Second, the efficiency of current version of WSHLA is
better than the initial version. Because, timer is a resource-
consuming object and reading/writing file are also time-
consuming operations. The two reasons make the efficiency of
the whole system low. In the current version, message
mechanism allows applications just listen to messages without
consuming extra resource and operations. So, the efficiency of
the new version of WSHLA is improved.

Third, federates programmed with Java and C# can work
together successfully; so did those programmed by other
languages that can invoke web services. The characteristic will
increase the reusability of federates and flexibility of WSHLA
greatly.

However, in the same circumstance, ant version of WSHLA-
based simulation application will cost much more time than
HLA-based simulation application. Because, the size of soap
packet used in WSHLA is much larger than the packet used in
HLA. In addition, when a service is requested or responded,
the necessary parameters will be marshaled or unmarshaled,
which will decrease the efficiency of WSHLA. The above
reasons increase the traffic of simulation application and make
its efficiency lower. However, it’s an inevitable limitation of
introducing web services in HLA-based simulation application.

VII. CONCLUSION

For the purpose of making up for the limitations existing in
HLA-based simulation application, we propose a framework
named WSHLA and use the framework to introduce web
services in HLA-based simulation application. With the help of
web services, we can build a loose-coupling simulation system,
which will increase the reusability, interoperability and
flexibility of HLA-based simulation application. Experimental
results, which validate the framework, demonstrate that using
the framework to introduce web services in HLA-based
simulation application can effectively make up for its
limitations and ensure its better running at expense of some
time.

The biggest problem existing in WSHLA, no matter what
version is given, is the efficiency of the framework is lower
than HLA. So, we will continue to find a better way to improve
the efficiency of WSHLA, and then promote further the use of
WSHLA.

REFERENCES
[1] Defense Modeling Simulation Office, “High Level Architecture Run-

Time Infrastructure RTI 1.3-Next Generation Programmer’s Guide
Version 5,” http://www.dmso.mil/, 2002.

[2] D. Brutzman, M. Zyda, J. M. Pullen, K. L. Morse, “Extensible Modeling
and Simulation Framework (XMSF) Challenges for Web-Based
Modeling and Simulation,” XMSF 2002 Findings and Recommendations
Report: Technical Challenges Workshop and Strategic Opportunities
Symposium, Monterey, 2002.

[3] C. Han, R. Ju, K. Huang, “HLA Simulation System Extension Based on
Web Services,” Computer Engineering, vol. 32, pp. 20-22, December
2006.

[4] D. Macannuco, K. B. Donovan, M. Falash, L. Salemann. “A Web-based
Infrastructure for Simulation and Training,” Proceedings of Fall
Simulation Interoperability Workshop, Orlando, 2004.

[5] B. Moller, C. Dahlin, “A First Look at the HLA Evolved Web Service
API,” Proceeding of the 2006 European Simulation Interoperability
Workshop, Stockholm, 2006.

[6] K. L. Morse, D. L. Drake, R. P. Z. Brunton, “Web Enabling HLA
Compliant Simulations to Support Network Centric Applications,”
Proceedings of the 2004 Symposium on Command and Control Research
and Technology, San Diego, 2004.

[7] K. L. Morse, D. L. Drake, R. P. Z. Brunton, “Web Enabling an RTI – an
XMSF Profile,” Proceedings of the 2003 Europe Simulation
Interoperability Workshop, Stockholm, 2003.

[8] H. Zhu, G. Li, L. Yuan, “WSHLA: Web Services-Based HLA
Collaborative Simulation Framework,” Proceedings of the 4th
Collaborative Design, Visualization and Engineering, Shanghai, 2007.

[9] P. Knight, R. Liedel, “Analysis of Independent Throughput and Latency
Benchmarks for Multiple RTI Implementations,” Proceedings of 2002
Fall Simulation Interoperability Workshop, Orlando, 2002.

[10] M. Lorenzo, “RTI Latency Testing over the Defense Research and
Engineering Network,” Proceedings of Spring 2001 Simulation
Interoperability Workshop, Orlando, 2001.

